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Math 12 Honours: Section 5.1 Solving Exponential Functions

1. Solve for all values of “x”:
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2. Use Logaﬁthm:; to solve for “x”:

»,’

a) 4 =10 x= lsg.40 43 b) 6™ =14 2% = Loy = 1og)
%ot = Foe Ll WG O EWLEES fog (‘l, ik
: S, e 3 j ) o [ogl4 DI = log
A t:-’k‘sz&- - A=y 40’{3121"L e QA+ = (0-3 S ‘—+T;}"(;'~
2 [ 3-x
Y = «:: d)107" =21 for b
o wtlfog,20 ) | )M ot ME 3TN
L Siq 4, >
ye o 28 (s arsry
& £ s
e) (2%7)3" =8000 5o 2tbp5 6" =20 o, 3T
LR g W‘Tﬁ“ 3 E .:%7’;:{
14;5{2“ "':3“‘ o %{?’52‘{;&(‘} wi25 3 [’ i %@gaﬂig ?’ (05206 { v I3
. \ w ke (g2 Y
2% e (0.57,‘) = b& {szli% g},@j@? N
3. Rewrite each of the following in logarithm form:
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5. Simplify each of the following logarithms without using a calculator:
a) log, 24 +1log, 9 b) log, 100 —log; 4 c)log, 8+log, 64
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7. Suppose you have the equation 2°*
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12. Suppose that P=2" and Q=3" . Which of the following is equal to 12™ for every pair of integers
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13. Solve the equation for “y” in terms of “x”. For hat values of “x” is there no value of “y” that satisfies the
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15. Suppose “a”, “b”, “c” and “d” are positive integers, then whatis the smallest possible value of a+b+c+d ?
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16. Given the equations below, find all the ordered triples of real values (a,b,c) that satisfy the them:
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Math 12 Honours: Section 5.2 What are Logs and Basic with Logarithm

log(AxB)=log A+log B log(—é) =log4—1logB log A" = nlog 4 log, b° = logh
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Math 12 Honours: Section 5.3 Solving Logarithmic Equations with Identities

1. Solve for “x” and state all the extraneous roots: Show your work:
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5. If log, x,
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Math 12 Honours: Section 5.4 Graphing Exponential & Logarithmic Equations with Transformations

1. Foreach graph below, find the Y-intercept, X-intercept (if any), Domain and Range, and Asymptotes. Then
graph the function with the grid provided. Be sure to label the axis on your grid.
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2. Graph each of the following logarithmic functions. Indicate the Domain, Range, equations of Asymptotes,
and any intercepts. Be sure to labelyour axis on the graph:

a) yzlog(2xﬁ +1 R P b) y =log(4x+1)—3
7 : 2 /.
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3. Graph the following functions. Indicate the domain and range: X0

a) logy =2logx

b) 0.5logy = log(x—Z) '
A 3
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4. Giventhat f(x)=log3 (x+2) 4, find f~ (x) ,the‘,inverseéftJnction of f(x)
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5. What transformation is required to go from y =logx to y = log(l} ?
: b

7. Are the following graphs the same? Yes or NO? Explain:

a) y=4(0.5) and y=4(2)" b) y=24(0.5)" and y=6(2)
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vestieal (@‘\X\Q o

hewn Shospice

- {so. A 0
g\(\ﬂ’%’( Uy WS 3 T e

8. What is the inverse function of f(x) = ?)(S)x_2 ? What are the domain, range, x-intercepts, and Y-intercepts

9.

of both f (x) and 1 (x) ? What patterns do you notice? ’f ) dowein KER K e it - R
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Find the coordinates of the points of intersection of the graphs: y = loglo x— 2) nd 1( 10 (x—{—l)
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10. Determine all the points where the two funct:o;s intersect: y =log,, x x' and y= (Iogm x) (Euclid)
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11 If 10g(a+b)=x and log(a —ab+b2)@
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, then what is the value of & +b interms of “X” and ”y"?
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12. Solve the inequality -1

a) log, (2x—3)>2 b) log, x>5
2%-% 715 0 % <)
g
. .
Ay Z QK<L
oy,
13. What is the domain of the following functions:
) y=Ilogg, (log5 x) i) y=1log,, (log5 (logé x))
X >o "
29,% 70 Logym 7!
X >0
X7
O < X<
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14. Solve for “x”: log, x —log, 16=—6-—10gx8 (Euclid)
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15. Find all the values of “x” such that: logzx(483[—) log,, (162\/_) (Euclid)
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16. Determine all real numbers " for which: 2log, (x l) 1-log, (x+2) (Euclid) Tryr Wt
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: ;?of"é;héle x,y) with 0° < x <180°
~ systems of equatidns: (Euclid)

and 0° < y <180° that satisfy the following

. 3 sin x 1
log, (sinxcosy)=—= and log, =—
2 cosy) 2
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18. Determine all pairs (a,b) of real numbers that satisfy the following systems of equations: Give your answer in
simplified exactd form: ({Euclid)

\/24-\/5:8 and

log,, a+log,, b=2
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Problem

, m
The value of  that satisfies log,. 3%° = log,.+a 32°% can be written as —, where m and n are relatively
n

prime positive integers. Find m -+ n.

Solution

Let log,. 3%° = log,.+s 3°°*° = n. Based on the equation, we get (2°)" = 3% and (2°3)" = 32°%°,
Expanding the second equation, we get 8™ - 2°™ = 32020 gypstituting the first equation in, we get
8" . 320 = 32020 54 8™ = 32909 Taking the 100th root, we get 8T = 32°, Therefore, (2%5)" = 3%° and

3
using the our first equation(2*™ = 3%%), we get z = 100 and the answer is . ~rayfish
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Math 12 Honours: section 5.5 Apphcatlons of Logarithms and Exponential Functions:
1. Suppose you invested $1000 at 5% compounded annually, how many years will it take your
W) .
(000 (1 5% 3 = 0000

li) $10,000
W (000 CI+ 30 =1000d
U.Q@’)m = log

investment to grow to i) $5000?
/. 0 5 x = (@
H o= ,{"’ 1)

0 x
togo={ it 5%) = H0oo
T
o h oo
(073 % =4y, 510
I. ¢ 6 = 5 h uﬁ 15
} % =4714
N = iojl-or&b /X’ 0&’3 > U ff
29
2. Calculate the number of years it j/ould take an investment to double for each of the following

i) 10% compounded daily
ka// za;’t}'X
) _
% -2
u)’/ ?‘

i) 10% compounded semi-annually
FCH-_E. 7 = 2,)’7
2% N S 1y
(ro5)™" =2 Ao X 9%
2= l(ng‘}}g& X =699
iii) 8% compounded weekly x /\_(04, 5 ) 8% compounded monthly
= F510% e 80/ Y
ﬁ/ o % =T (HEE) -2
(1+ 2 = 5
S . R A
52% =loy, gh 2 K= 6T s
&( LS bgi
3. Ingeneral, for “k%" i nterest how many years does an investment take to double? Triple?
E\ o Y bl ﬂ( e
> EENDT =2 ) e AN
x = {OQ“—‘/FJ. Q—" /} e )
Skt K= !,tog / 5
loo l\/jeﬂé % ﬁ} E{r)u! i H‘L
1 T 3 Yeal S 2o “"m,;zfé.
4. A 5% investment compounded da|ly is equivalent to what interest ra d%ﬁpounded annually?
B/ /-
(1+ *:'50\) (- Ie,/o)
=7 - 5 ""ﬁ“?n’j Fhybated 1 4
5&:)/:’ riaest 107 (,C\; dedd pustien

e <513
Suppose you invest $5000 each year into an investment that gives a 10% return, how much will your
{ _w - f! E
= :j £ f “\« /xJ /

v Boge Chis) ¥

5.
portfolio be after 25 years?
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6. The half life of sodium-24 is 15.5 hours. Suppose a hospital buys a 100mg sample of sodium-24,
how much of the sample will be left after 72 hours?

12

loo ¥ % )55‘5 = 3996 we.

7. How long will it take a 100mg sample of sodium-24 to decompose to 1mg?

® % =155 loge?
J T
0orE)™e =1 %= 102979
LNes - Gfgunty
L )'”q YA T il take 1029143 ﬁ/mw
(5,1 100 ;_&%‘m”

8. lodine-129 is a dangerous substance in radﬁoactwe waste with a half life of 16million years. How
long will it take 1,000g of Iondme 129 to decompose to 1g?

T4 will rolee growue

/.L— - &@Q\ ﬁﬁ’&‘ﬁ
looa (2) = | “7 159.05 willion ng@z{“:-‘e .
(?J > T@SO (:Lm f_.‘woo
iDﬁ} 900 = “w = | 56}-,4-;
9. A500mg radidactive substance decomposed to 20mg in 25 years. What is the half life of the
radioactive substance? X = L2
= (’D 5 e
Hoo « (,‘) % = o R
“;—‘ X =5-2%

o
=Y % .

25 The WQ{« 1’«%& e Qowt He38 eere

10. A large fossil with 25mg of carbon 14 was found that originally contained 3000mg of carbon 14. If
the half life of carbon 14 is 5700 years, then how old is the fossil? o)
! The “§o»<~,,~,1! v Oou)

1 ~BIoe A '}‘( = (o2 %ﬂ .
Jooon (437 =25 g T 37267. 28 daus ol
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_ _ X = 3936929
11. 5% of a substance decays in 100 days. What is the half life of the substance?
Dy
e ‘/x/q"/ X = 135 54
{QQ 9 k @ - r7 ° w cg
, ' ol
#\’,,.)@;?f _ 14 The i,&.mHl i’j’ﬁ i &
¢ 2 (3513 doys.,
00 | .
,7? :.lo (%; 20
100
/\K B ge?‘}_ :‘29'3,



12. A swarm of locusts can multiply in population by 5 times every 6 weeks. How long will it take a

cluster of 5000 locusts to grow to 1 million? v T an
Ty o= bl
T b C
5000x 5 = |D x =14-75 -
% piotasl 1935 1 sraels
5 = D00 T wall ﬂi:oa,%é«?_- SEatth L A

13. The amount of intensity of an earthqualze is méasured by the amount of ground motion recorded on
a seismograph. An increase in 1unit magnitude on the Ritcher scale represents a 10 fold in intensity.
How many times more ‘intense’ is an earthquake of magnitude 9 than an earthquake of 5.5?

1-55
[0 — 2u62-27T166

oy b2z Tihb Fumes winie  TATMS: .

o

14. For each increase of 1 unit in magnitude, earthquakes are 32 times more powerful in the amount of
energy. An earthquake of magnitude of 1 has about 794,328J of energy. An earthquake of

magnitude 2 has about 25,118,864J of energy. An earthquake of 2.5 magnitude has 141,253,754J

of energy. How many much energy is in an earthquake with an magnitude of 6.5?
: =
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& ‘ﬁ\\‘_\};g af

| 412 5o 5%‘ ® %DZL{?\ = | a8 v S\Qj D)
L
Oiound |- 48 (0 daules.

15. In 1976, an earthquake in Italy released approximately 10" joules of energy. What is the magnitude
of that earthquake? iy -1 =5.3¢
-l . 4= b
35" = j2nfqetBy The wiag et 7
Ao = loa_ 125892578 mwuj’j b-28,
16. The loudness of sound is measured in decibals (dby A”I%'very increase in 10db represents a 10 fold”

'}(-
7942832 = (0

increase in loudness. Going from 10db to 30db, an increase in 20db, is 10* times more loud. A
regular-conversation is about 55db. Listening to a Rock concert is about 110db. How many times

louder is the Rock concert than a normal conversation?
1o -55
m = f:%éf} s E"é%%

('S [firoundt l '
17. A soft whisperer speaks at about 30db. Getting in a yelling match with Cheong is about a thousand

times louder. How many db would Cheong be shouting at?

{7/770 -
i = [oeo
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18. In chemistry, the pH scale measures acidity or alkalinity of a solution. pH ranges from 0 (acidic) to
14 (alkalinity), with 7 being neutral. For each increase in pH, there is a 10 fold increase in alkalinity.
For each decrease in pH, there is a 10 fold increase in acidity. Tomato juice has a pH of 4.2 and
lemon juice is about 1.8 in pH. How much more acidic is lemon juice than tomato juice?

ot RARPPART Y o
T Qroundl 25 (.18 bYimes (wote acihc

19. A dishwasher soap has a pH of 12.8. Baking soda is about 9.3 in pH. How much more alkaline is the

dishwater soap than baking soda?

(07872 - 5 g1

. b
L5 fowndl  31bo-2776b fimes Wt L gal7ene

20. The pH values of milk ranges from 6.4 to 7.6. Pure water has a pH value of 7.0. How much more
acidic is milk with a pH of 6.4 than pure water?

764 .
(0 = 10" = 3.9

P o
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21. How much more alkaline is milk with a pH of 7.6 than pure water?
70 -1 ,
(0 BN .6 )
0= 29%
. 1406 Flognd
Tos Oround 3.98 tiwes wore alkeafing,
22. The total amount of arable land in th world is about 3.2x10°ha. An hectare of land is about 100m
by 100m. 0.4 ha of land is enough to grow food for one person. World population in 2021 is
7.874billion, growing at 1.1% annually. When will the demand for arable land exceed the supply

. _ ’ ® —
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Q [ /) |. 016002042 lm_ﬁ@( ’tmm jw‘”
%X = o3 1.0 ! oih -- T el %y 22 ljeos
23. If we are able to reduce the growth rate of the world populatlon by 0.5 and increase the N@,ﬁ )
productivity of food productlon by 200%, then how long will we have until the demand for arable
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(o068l = 2255,
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land exceed supply?
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14. When p = Zklnk the number e? is an integer. What is the largest power of 2 that is a factor of
= F” (al+ 2y 24 % 20004 :
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15. Challenge: What is the value of Y *
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16. Evaluate: ZW’”T , given Euler’s beautiful result that: 1+—+—+.. et L= —
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Name: Date:

Viath 12 Honours: section 5.6 Natural Logarithms and e

A
1. When should you use the formula 4= Pxe"™ versus the final equation: F ]>< NL
when SM‘\DO”“‘ i "“ c ol o F Ry I <l "’w PR
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2. When a population ns@eas{g{contlnuously at arate of 3. 5%, then what should the value of “r” be in
the equation At 1;;( e¥ Wé il e 35 7{ A ,
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6. Reduct the following to lowest term

/
}
()

~21n3+3In2 1 —e 3
a) e —lnf —~ ¢) In{3%e
,,Z»gl'ﬂ?:’ ?"‘;“:"“1“' b) e (6) ) ( -2 ) -/)i r?‘.’
=™ . ‘ bzt s
~ = g = =
- (:5) L2 =7 . V,,Lﬁ,(h% & @
i
e) Ine™ PEECE
d) In _.__\/—7; = PR o /) ,
e N ) J‘} o e "{ﬁ') Q/ i !
=g - e :







7. Solve for “x”

a)e™ =4 b} lnx=11 ‘ c)ln(3x—2):4
s b ¢ =%, Jiere £,
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8. Express the following as a single logarithm:
1
a) glnx+21n(6x+5)
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c)41nx+51n(2 x) 21n(1+x)
by e

b) 3lnx—1n(x2—1)+1n(x2—-1)
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10.

11.

12.

- 13,

The relationsip between the elasped time “t”, in hours, since Jack took his first does of medication, and

. the amount of medication M(t), in mg, in his bloodstream is modelled by the following function below.

M(t)=30xe™

) How much medication will Jack have in his bloodstream after 3 hours?
: , ~G-En R - ) ‘
iU;;(?!f} = '%G’*" ij = J,:Q‘Eft’, ’3 -4 ’:l Q:E Pl SR
)] How many hours will it take for Jack to have 1mg left in his bloodstream?

Xed
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The amount of money Dave has in his investment is given by the formula: 4 = Pe” . If He invests $5000

at 2.5% interest, compounded continueously, how long will it take.to double his investment?
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substance after “t” years in the form of A= Pe™ ? 1 - %"’3(?’ A
rt i = dnz A=Pe
. ;

TD bank offers an GIC that gives annual interest of 1.5% compounded monthly. What is the equivalent
interest rate if the interest is compounded continuously?
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Each year, Jason’s parents contributes $2500 into his RESP account, then govt will match it with $500.
Suppose the RESP is invested in a fund that gives 8% return annﬁllﬁ,compounded_c\ontinuou{sly,_ B
starting when Jason was born, how much will he madcoung when he turns 187
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